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Abstract
The first arrival time of a solute plume migrating from its source to an environmentally sensitive target is one of the key

quantities of interest when assessing the risks of groundwater contamination. First arrival times are correlated with the
hydraulic connectivity properties of spatially heterogeneous porous formations. Hydraulic connectivity leads to the

presence of preferential flow paths which in turn control the transport dynamics of the leading edge of the solute plume and

therefore first arrival times. In applications, these arrival times are subject to uncertainty given the lack of a detailed site
characterization. The Monte Carlo method is commonly adopted to estimate the uncertainty of solute arrival times,

however it leads to a computational burden. In this work, we build upon the existing knowledge regarding the correlation

between connectivity and first arrival times to propose an innovative connectivity-based ranking Monte Carlo approach to
quantify the uncertainty of first arrival times. The proposed method is tailored to predict first arrival times and allows to

alleviate the computational costs when compared to the traditional Monte Carlo method. Our method consists of ranking

the randomly generated spatially heterogeneous hydraulic conductivity fields according to their connectivity. The con-
nectivity metric adopted is based on the concept of the minimum hydraulic resistance and can be obtained at a very low

computational cost through the use of graph theory. We illustrate the methodology by analyzing the convergence rate of the

first arrival time means and standard deviations. We compare the convergence rate of the first arrival times statistics
obtained through the proposed methodology with those computed through the traditional Monte Carlo method. Overall, our

results indicate the that the proposed methodology ensures a faster convergence of the considered quantities, thus reducing

the time required for their estimation and the associated computational burden.

Keywords Stochastic hydrogeology ! First arrival time ! Uncertainty quantification ! Connectivity ! Contaminant transport !
Graph theory

1 Introduction

Computing the uncertainty in first arrival times of a solute
body at an environmentally sensitive location is a key

component in subsurface risk analysis. The hydraulic

properties characterizing the subsurface, such as the
hydraulic conductivity K, are spatially heterogeneous over

a multitude of length scales (Rubin 2003). The heteroge-

neous structure of the subsurface environment leads to the

presence of preferential flow paths that can significantly

impact the spatiotemporal dynamics of transport (Geng and

Michael 2020). These preferential flow paths are an out-
come of well-connected highly permeable porous materials

which in turn control early solute breakthrough at a given

location downstream from the source zone (Bianchi et al.
2011; Fuks et al. 2019). These first arrival times (or first

passage times) are subject to significant amount of uncer-

tainty given the limited resources for site characterization.
The impact of hydrogeological heterogeneity on solute

arrival times has been topic of study in the past (Shapiro

and Cvetkovic 1988; Rubin and Dagan 1992; Bellin et al.
1992; Riva et al. 2006; Gotovac et al. 2009; Fiori et al.

2011; Bianchi and Pedretti 2017). Highly connected

channels in the spatially heterogeneous K field have been
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shown as key factors in controlling contaminant early

arrival times (Deutsch 1998; Trinchero et al. 2008; Tyu-
khova and Willmann 2016; Henri et al. 2015; Rizzo and de

Barros 2017). Sahimi et al. (1983) showed how first arrival

times in a disordered porous media in a two-phase flow
were affected by the degree of saturation. Bianchi et al.

(2011) investigated the geological connectivity at the

Macrodispersion Experiment (MADE) site (Mississippi,
USA) and how it impacted the asymmetry of the solute

breakthrough curves. Harvey and Gorelick (1995) showed
how the temporal moments of the concentration break-

through curve were affected by heterogeneity. The

importance of solute arrival times on the estimation of
human health risk has also been reported in the literature

(Andričević and Cvetković 1996; Maxwell and Kastenberg

1999; Henri et al. 2016; de Barros et al. 2016; Jabbari et al.
2017). For example, Henri et al. (2015, 2016) showed how

preferential flow paths could be beneficial or detrimental to

human health risks due to the presence of chlorinated
solvents in groundwater. The impact of both permeability

and porosity spatial heterogeneities on first and late arrival

times was also topic of investigation (Libera et al. 2019).
Within the context of groundwater management of non-

point sources, it was shown that the homogenization of the

hydraulic conductivity field heterogeneity affected the
uncertainties on travel times (Henri and Harter 2019; Henri

et al. 2020). The study of Andričević and Cvetković (1996)

illustrates how travel times can be used as indicators to
quantify how geologic heterogeneity influences the amount

of released contaminant mass that crosses a control plane.

Several metrics have been employed to quantify con-
nectivity in porous media (Sánchez-Vila et al. 1996;

Knudby and Carrera 2005; Le Goc et al. 2010; Fiori and

Jankovic 2012; Renard and Allard 2013; Gershenzon et al.
2015; Jimenez-Martinez and Negre 2017). Measures of

connectivity fall within two categories: static and dynamic

(Knudby and Carrera 2005). Static connectivity indicators
are based on the K field whereas dynamic connectivity

indicators use quantities based on flow and/or transport

features. Geological objects have been defined by Deutsch
(1998) in order to identify the preferential paths in a

heterogeneous field. An alternative connectivity indicator

was proposed by Trinchero et al. (2008) which is based on
the hydraulic response time in a pumping test. Savoy et al.

(2017) investigated the impact of different geological

conceptualizations on both connectivity and early arrival
times. Rizzo and de Barros (2017) used graph theory [i.e.

using the Dijkstra’s algorithm (Dijkstra et al. 1959)] to

compute the least resistance path and used the minimum
hydraulic resistance (Tyukhova et al. 2015; Tyukhova and

Willmann 2016) as a connectivity metric. The approach

proposed by Rizzo and de Barros (2017, 2019) is compu-
tationally efficient and was tested in both two- and three-

dimensional heterogeneous porous media for generic

source-to-receptor conditions (i.e. hydraulic connectivity
between point source to control plane, point source to point

receptor, etc). Knudby and Carrera (2006) also employed

the Dijkstra’s algorithm to study connectivity in a two-
dimensional aquifer. The minimum hydraulic resistance

has been shown to be an indicator of the first solute

breakthrough times (Tyukhova and Willmann 2016; Tyu-
khova et al. 2015; Rizzo and de Barros 2017). For exam-

ple, Rizzo and de Barros (2017) showed that the minimum
hydraulic resistance is a lower bound estimation of the first

arrival times. However, due to challenges in site charac-

terization, the minimum hydraulic resistance (and therefore
first arrival times) are subject to uncertainty. As highlighted

in Chapter 9 of Rubin (2003), early arrival times are sub-

ject to the largest uncertainty (see also Zimmerman et al.
1998). To address this challenge, the graph theory-based

minimum hydraulic resistance introduced in Rizzo and de

Barros (2017) has been recently used to estimate the
uncertainty of the minimum hydraulic resistance and

improve data acquisition campaigns that aim to reduce the

uncertainty in first arrival times (Rizzo and de Barros
2019).

There are several approaches that aim to quantify

uncertainty of model predictions in the subsurface envi-
ronment. Existing approaches consist of perturbation

methods, Monte Carlo simulations and polynomial chaos

expansion [for a review of the use of these methods in
subsurface hydrology, see Zhang et al. (2010)]. Although

conceptually straightforward, the Monte Carlo approach is

computationally demanding since the statistical accuracy
of its predictions depends on the number of realizations

used. Given its conceptually straightforward approach, the

Monte Carlo method is considered the standard for esti-
mating uncertainty. However it suffers from slow conver-

gence and the statistical accuracy of a given model

prediction depends on the number of K field realizations
utilized (Loll and Moldrup 1998; Ballio and Guadagnini

2004) and the degree of heterogeneity of the subsurface

environment (Leube et al. 2013; Moslehi et al. 2015). As a
consequence, full-blown stochastic modeling based on

exhaustive Monte Carlo leads to a significant computa-

tional burden. Works have reported methodologies to
reduce the computational time associated with the uncer-

tainty estimation of solute arrival times. Berrone et al.

(2020) proposed to combine a multilevel Monte Carlo
(MLMC) and a graph based primary subnetwork identifi-

cation algorithm (see Hyman et al. 2017) to estimate the

mean and variance of first passage times (i.e. first arrival
times) in fractured media. Gotovac et al. (2020) employed

a maximum entropy algorithm based on Fup basis func-

tions within a Monte Carlo framework to characterize the
uncertainty in solute travel times.

1040 Stochastic Environmental Research and Risk Assessment (2021) 35:1039–1049

123



In this paper, we propose a hydraulic connectivity-based

methodology to speed up Monte Carlo simulations that aim
to predict the uncertainty of first arrival times of a solute

plume in a spatially heterogeneous porous media. To

achieve our goals, our methodology combines elements
from the graph theory-based connectivity concept proposed

in Rizzo and de Barros (2017) with the connectivity

ranking concepts introduced in Deutsch (1998) in order to
accelerate the Monte Carlo convergence of the statistical

moments of the first arrival times.

2 Minimum hydraulic resistance

We are interested in computing the first arrival times of a

solute released in a spatially heterogeneous flow through a
porous medium. Heterogeneity stems from the spatially

variable, locally isotropic, hydraulic conductivity field

KðxÞ where x ¼ ðx1; . . .; xdÞ represents the Cartesian
coordinate system and d is the dimensionality of the flow

domain. The first arrival times are associated with solute

particles that travel through well-connected zones of high
K values. In order to identify these well connected zones,

we will use the concept of the Minimum Hydraulic Resis-
tance (MHR) (Tyukhova and Willmann 2016; Rizzo and
de Barros 2017). The MHR is a static connectivity measure

(Tyukhova and Willmann 2016) that relies solely on the

K field and has units of time. The hydraulic resistance is an
indicator of the resistance found by a solute particle trav-

eling along a path denoted by C. If the path C follows a

segment of well-connected high conductivity zones, it will
likely be associated with a low hydraulic resistance. That

implies that the time needed for a solute particle (following

the path C) to reach a given receptor will be low.
Let us consider a solute source zone characterized by a

volume VS and a receptor (i.e. an environmentally sensitive

target) of volume VT . The MHR between VS and VT is
mathematically expressed as

Rm ¼ min
C2PVT

VS

Z

C

1

K
dc; ð1Þ

where PVT
VS

denotes all the existing paths from every point

within VS to every point within VT . The path Ĉ, through
which the hydraulic resistance is minimized, is defined as

the Least Resistance Path (LRP) and its hydraulic resis-
tance value is equal to the MHR Rm [see Rizzo and de

Barros (2017) for further details]. The MHR Rm in (1) is

equivalent to the shortest path problem and can be com-
puted through a graph theory framework and solved with a

variation of the Dijkstra’s algorithm (Rizzo and de Barros

2017). Details regarding the algorithm and the procedure to
transform the K field into a graph can be found in Rizzo

and de Barros (2017, 2019). The tool denoted as ‘‘Lazy

Mole’’ was used to compute the Rm between two given
locations in a heterogeneous K field and is shared openly

on GitHub (https://github.com/GerryR/lazymole) (Rizzo

and de Barros 2017).
As initially showed in Tyukhova et al. (2015) and

Tyukhova and Willmann (2016), there is a correlation

between the Rm and the solute first arrival time. As
depicted in Fig. 4 of Tyukhova and Willmann (2016) and

Fig. 7 of Rizzo and de Barros (2017), larger values of Rm

correspond to larger solute first arrival times. For the sake
of completeness, this correlation is plotted in Fig. 1. Fig-

ure 1 plots Rm versus the first arrival times (i.e. the time in

which 1% of the solute mass arrives at a control plane) for
two levels of heterogeneity in the conductivity fields. For

every K field, there is one value ofRm and a corresponding

first arrival time computed through a flow and transport
simulator.

3 Methodology

3.1 Generating a connectivity-based ranked
hydraulic conductivity ensemble

As mentioned in Rizzo and de Barros (2019), one of the
key advantages of using a static connectivity metric such as

Rm is that important features of the hydrogeological sys-

tem can be extracted without resorting to flow and transport
simulations and therefore, without much computational

costs. This is a relevant advantage when dealing with

stochastic systems that rely on the use of a Monte Carlo

Fig. 1 Illustration of the correlation between first arrival times t1% and
the minimum hydraulic resistance Rm. An ensemble of 2047 spatially
random two-dimensional hydraulic conductivity fields were used for
each level of heterogeneity. Heterogeneity is measured through the

log-conductivity variance r2Y . Results are obtained for r2Y ¼ 3 (blue)

and r2Y ¼ 1 (red), using the parameters reported in Table 1
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framework (Ballio and Guadagnini 2004). The computa-

tional costs associated with Monte Carlo simulations are
particularly high when the quantity of interest is the first

arrival time which is subject to largest uncertainty (Rubin

2003).
Given the positive correlation between Rm and first

arrival times (see Fig. 1), in the present study we propose a

methodology which consists of ranking the hydraulic
conductivity fields based on their Rm values with the goal

of speeding up the statistical convergence of the mean and
variance of the first arrival times (t1%), defined as the time

required to the first 1% of contaminant mass to reach a

given location downstream from the source zone. Deutsch
(1998) introduced the idea of combining the usage of static

quantities (related to connectivity) and ranking process to

estimate specific dynamic field characteristics. The idea
consisted of the following steps: (1) defining an indicator

variable that depends on several geological parameters

such as lithofacies, porosity and permeability in order to
define which geo-objects within the domain were well-

connected; and (2) ranking the given geostatistical real-

izations according to their connectivity level.
In our work, we propose to employ Deutsh’s ranking

process (Deutsch 1998) in order to improve Monte Carlo

convergence of the statistical moments of t1%. Our
methodology is based on the following steps:

1. Hydraulic conductivity field generation We start by
randomly generating a large ensemble of size N of log-

conductivity fields, i.e. Y ¼ logðKÞ. These log-con-

ductivity fields can be generated using any random
space function model and has no restrictions regarding

its statistical nature, i.e. multi-Gaussian or non multi-

Gaussian.
2. Rm computation Once the solute source VS and the

target VT zones are defined (which are identical for all

the N realizations of the conductivity field), the ‘‘Lazy
Mole’’ tool (Rizzo and de Barros 2017) is employed to

evaluate the Rm value between those two locations for

each generated conductivity field.
3. Ranking Based on the previously computed values of

Rm (see item 2), the set of N conductivity fields is

reordered according to the following procedure:

(i) sort, in descending or ascending order, the N
conductivity fields according to their mini-

mum hydraulic resistance Rm;
(ii) rearrange the N conductivity fields into a

balanced binary search tree (i.e., for each

node of the binary search tree, the height of
the left and right sub-trees differ by at most 1

for each node) (Booth and Colin 1960);

(iii) reorder the fields by traversing the balanced
binary search tree using a Breath-First Search

(BFS).

4. Subsets generation This step consists of generating

subsets from the ranked hydraulic conductivity field

ensemble. From the ranked set of N hydraulic conduc-
tivity fields, a subsets are generated, where

a ¼ log2ðN þ 1Þ; each of the a subsets includes the

first 2n & 1 conductivity fields, with n ¼ 1; . . .; a.
5. Flow and transport simulations For each generated

hydraulic conductivity field, groundwater flow and

solute transport are simulated. For each K field, we
compute the first arrival time t1%.

6. Evaluation of the first arrival time statistics We

compute the mean and variance of the first arrival
times for every given subset of the hydraulic conduc-

tivity field ensemble. The convergence is analyzed by

utilizing the a subsets generated from the ranked set of
N hydraulic conductivity fields.

To test the performance of the methodology, we will

compare the convergence rate of the mean and variance of
t1% between the ranked approach described above and the

traditional Monte Carlo method without ranking (i.e. run-

ning flow and transport simulations on the non-ranked
K fields, see item 1 of the list above). Additional details

regarding the ranking and the creation of the subsets are

provided in Sect. 3.2.

3.2 Implementation

The goal of our ranking procedure is to obtain subsets of K
fields that will lead to a quicker convergence of the sta-

tistical moments of t1%. In order to achieve this goal, a
ranking procedure based on the Rm value (see Eq. 1) of

each K field is applied such that the subsets are balanced. A

balanced subset is defined as the subset where, to the
number of K fields with an higher value ofRm, corresponds

an equal number of counterparts of K fields with lower Rm

values.
To illustrate the implementation of the methodology,

Fig. 2 shows the procedure to rank N ¼ 7 hydraulic con-

ductivity fields following item 3 listed in Sect. 3.1. As
shown in Fig. 2a, initially the Rm values of the randomly

generated K fields do not follow any specific order. The

first step of our ranking procedure is represented in Fig. 2b,
where the hydraulic conductivity fields are sorted in

increasing order ofRm values; after that, a balanced binary
search tree is constructed from the fields in Fig. 2b starting
from the center and continuing with the center of the left

and right subsets, creating the tree structure reported in

Fig. 2c. Each subset is finally created by searching the tree
with the BFS algorithm (red dotted line in Fig. 2c), as
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highlighted by the horizontal square brackets displayed in

Fig. 2d. If in the tree sort algorithm (Knuth 1968) the
elements of the generated binary search tree are sorted

following the in-order traversal, then by adopting the BFS,

the sorting process (1) starts from the root of the tree (see
level 1 in Fig. 2), (2) then moves to the next tree level (see

level 2 in Fig. 2) and (3) proceeds as indicated by the red

dotted line in Fig. 2d.
To better grasp the rational behind the proposed con-

nectivity-based ranking methodology, we can consider that

the first subset contains one single conductivity field, the
one whose value of Rm is the median of the whole distri-

bution shown in Fig. 2b. Based on the relationship between

Rm and t1% (see Fig. 1), we can assume that to this field
corresponds a value of t1% close to the mean value of t1% of

the K ensemble of size N. To build the second subset, we

consider the remaining fields as partitioned in two groups:
those with Rm values lower than the median value (the one

associated with the field that constitutes the first subset),

and those with higher Rm values; in each of these two
groups, the hydraulic conductivity field with the median

value of Rm is added to the first subset to generate the

second one. In general, we can assume that the b fields
contained in a subset divide the complete set of fields (in

increasing order of Rm) in bþ 1 groups. The field corre-

sponding to the median value of Rm of each one of these
groups is added to the existing subset to create the subse-

quent one.

4 Illustration

4.1 Physical set-up and input data

For the upcoming illustrations, we will test our method-
ology on two- and three-dimensional (2D and 3D) random

K fields. The porous domain has dimensions ‘i along the

ith direction where i ¼ 1; . . .; d. The log-conductivity field
Y ¼ logK is modelled as a multi-Gaussian process char-

acterized by its mean value lY , variance r2Y , correlation
length along the ith direction ki and an exponential spatial
correlation function.

Fig. 2 Example of the connectivity-based ranked distribution
methodology for N ¼ 7. a The randomly generated K fields, each
one of them characterized by a value of minimum hydraulic resistivity
Rm. b The K fields are reordered for increasing Rm values. c A
balanced binary search tree is built. d The subsets are created

searching the tree through BFS algorithm that screens the tree
following the directions indicated by the red dotted line in c. The
three generated subsets are highlighted by the horizontal square
brackets in d
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The K fields are randomly generated utilizing the
SGeMS tool (Remy et al. 2009) which is based on a

sequential Gaussian simulation model. All the generated Y

fields are characterized by the same value of lY , r
2
Y and ki.

All values used to generate the conductivity fields are

reported in Table 1.
In order to compute the first arrival times, we simulate

flow and transport on the randomly generated K fields. The

governing equations for flow and transport are provided in
the ‘‘Appendix’’. Flow is considered to be at steady state

and in the absence of sinks and sources with permeameter-

like boundary conditions, i.e. prescribed hydraulic heads at
the entrance and exit of the domain and no-flow conditions

at the remaining boundaries. The hydraulic head at the

entrance and exit of porous medium are denoted by hin and
hout respectively. The flow field is simulated numerically

using MODFLOW (Harbaugh 2005) together with the

Python interface Flopy (Bakker et al. 2016).
An inert solute is instantaneously injected along a source

zone of area Ao ¼ s1 ' s2 (for the 2D case) or volume

Vo ¼ s1 ' s2 ' s3 (for the 3D case). We consider both
advective and local dispersive mechanisms for the trans-

port problem. The solute plume is simulated through the

used of a random walk particle tracking (RWPT) code

denoted as PAR2 (Rizzo et al. 2019). PAR2 is an open

source GPU-accelerated RWPT simulator and it can be

downloaded following the instructions provided in Rizzo
et al. (2019). For this work, we compute the mass cumu-

lative breakthrough curve at a control plane located at a

longitudinal distance L1 from the solute source zone. From
the mass breakthrough curve, we extract the first arrival

time, denoted here as t1%.
Values for the parameters used in the flow and transport

simulations are provided in Table 1. Table 1 also provides

information on the grid resolution and the number of par-

ticles used in the numerical simulations.

4.2 Test cases

We demonstrate the capability of the proposed methodol-

ogy to speed-up the convergence of the first two statistical

moments of t1%. In order to evaluate the performance of the
ranked-based methodology, we compare the results with

the ones obtained through the classic Monte Carlo

approach. We start our analysis by considering a 2D
computational domain with characteristic dimensions listed

in Table 1. For all upcoming results, we set r2Y ¼ 3 unless

stated otherwise.

Prior to illustrating the features of the proposed con-

nectivity-based ranked distribution methodology, we need
to ensure that the mean and standard deviation of t1% are

converged in the classic Monte Carlo approach. Figure 3

presents the convergence analysis of the t1% cumulative
distribution function (CDF). Convergence is assumed to

occur when the fluctuations in the probability Pr½t1%\s)
(with s = 60, 90, 100, 120 and 200 days) become negli-
gible. The results depicted in Fig. 3 also show that the

Table 1 Input parameters used in the simulations

Symbol Value Units

Y ¼ logK random generator

‘1 ' ‘2 (2D) 205' 100 [m]

‘1 ' ‘2 ' ‘3 (3D) 181' 91' 31 [m]

lY 1.6 [m/day]

KG ¼ exp lY½ ) 5 [m/day]

r2Y (2D) 1, 3, 4 [–]

r2Y (3D) 3 [–]

k1, k2 (2D) 8, 8 [m]

k1, k2, k3 (3D) 10, 10, 5 [m]

Flow simulations

hin, hout 10, 0 [m]

Dx1 ' Dx2 (2D) 1' 1 [m]

Dx1 ' Dx2 ' Dx3 (3D) 1' 1' 1 [m]

Transport simulations

a1; a2 (2D) 0.01, 0.001 [m]

a1; a2; a3 (3D) 0.01, 0.001, 0.001 [m]

Dm 8:6' 10&5 [m2/day]

s1; s2 (2D) 1, 100 [m]

s1; s2; s3 (3D) 1, 91, 31 [m]

L1 (2D) 200 [m]

L1 (3D) 180 [m]

Np (2D) 105 [–]

Np (3D) 107 [–]

Fig. 3 Convergence analysis of the first arrival (t1%) CDF. The
probability that t1% will take a value less than a specified value s as a
function of the number of Monte Carlo realizations N (where
1*N* 2047) is shown for spatially heterogeneous hydraulic

conductivity fields characterized by r2Y ¼ 3. All curves reach their
respective asymptotic value around N ¼ 1500
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probabilities evaluated for the selected values of s do not

change significantly for NJ1500. With a conservative

mindset, we consider that the first two statistical moments
of t1% are converged for NJ2000. Moreover, the number

of K field realizations has been chosen in order for the last

balanced subset to include all the N fields according to the
relationship for a provided in item 4 of Sect. 3.1. For such

reasons, N has to be compliant with:

N[ 2000 ð2Þ

N ¼ 2a & 1; ð3Þ

thus we set a ¼ 11 and consequently N ¼ 2047. Therefore,
for all upcoming results, we set the mean and standard

deviation of t1% evaluated at N ¼ 2047 to be the reference
values in order to test the performance of the connectivity-
based ranked distribution methodology presented in Sect.

3. From the aforementioned N ¼ 2047 realizations, we can

obtain the number of evaluated subsets, namely a ¼ 11
(see Sect. 3.2) which is needed to apply the proposed

connectivity-based ranking Monte Carlo method. To keep

the comparison with the classic (non-ranked) Monte Carlo
unbiased, we only report values of the mean and standard

deviation of t1% obtained from the Monte Carlo samples of
size equal to the number of realizations in the a subsets.

In Fig. 4 we show how the first two statistical moments

of t1% at the control plane (see Table 1) vary as a function
of sample size N of the selected subsets of K fields. The

results reported in Fig. 4 show that both the mean lt1%
(Fig. 4a) and standard deviation rt1% (Fig. 4b) reach con-

vergence at N + 500 with the proposed connectivity-based

ranked distribution methodology, while the results obtained
from the classic Monte Carlo present a more unsta-

ble trend. The insets shows how the fluctuations of the

classic Monte Carlo approach are more pronounced.
To analyze the error associated the Monte Carlo simu-

lations, we define the error metric EX as:

EXðNÞ ¼
XjN¼2n&1&XjN¼2047

XjN¼2047

!!!!

!!!!' 100; ð4Þ

with X ¼ ½lt1% ; rt1% ) and n ¼ 1; . . .; a. Note that Eq. (4)

represents the relative error measure with respect to the
reference values obtained for the statistical moments (i.e.

using N ¼ 2047, see Fig. 3).

The behaviour of the relative error given by Eq. (4) is
illustrated in Fig. 5, where its value for the ranked

Fig. 4 Convergence analysis for
the a mean lt1% and b standard

deviation rt1% of t1% obtained
from the connectivity-based
ranked Monte Carlo (light blue)
and for the classic Monte Carlo
(dark blue). Results obtained for
hydraulic conductivity fields

characterized by r2Y ¼ 3

Fig. 5 Relative error E of a lt1%
and b rt1% as a function of the
ensemble size N. Results for the
connectivity-based ranked
Monte Carlo (red solid line) and
for the classic Monte Carlo
ensemble randomly shuffled
200 times (gray lines). The
black solid line corresponds to
the mean of the relative error
over all 200 shuffles, while the
black dotted line represents the
confidence interval
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methodology is compared to the values of the classic

Monte Carlo approach. Note that for this error analysis, the
classic Monte Carlo ensemble was randomly shuffled 200

times, i.e. all N ¼ 2047 K field realizations have been

randomly reordered in 200 different ways. This is done in
order to account for of all possible convergence behaviours

since the randomness of the K field generation process can

impact the convergence rate of a given quantity of interest.
For example, each ‘‘gray’’ line depicted in Fig. 5 corre-

sponds to a convergence rate of the first arrival time
statistics for a specific random sampling of the K field. For

completeness, we include the average value and confidence

interval of the convergence rate obtained over all randomly
reordered fields. Close inspection of Fig. 5 reveals that the

proposed methodology leads to a faster error reduction for

both the mean and standard deviation of the first arrival
times. Furthermore, the connectivity-based ranked distri-

bution methodology removes the randomness effect of the

convergence rate of the output statistics (compare ‘‘red’’
solid curve with the ‘‘gray’’ curves in Fig. 5a, b).

The trend of the relative error (4) obtained for lt1% is

reported in Fig. 5a. It can be seen that our methodology
leads to a much faster convergence of lt1% , having an error

consistently lower than the average error obtained from the

traditional Monte Carlo approach. The only exception is
observed for one N value for which the values of the error

for the proposed connectivity-based ranked scheme and the

average error curve obtained from the classic Monte Carlo
shuffled ensembles coincide (see overlapping red and black

solid lines). Figure 5b shows that for N ¼ 31 the error for

rt1% is kept under 5% for the ranked methodology (red solid

line), while the mean of the traditional Monte Carlo shuf-

fled ensembles (black solid line) needs more realizations
(N + 255) to reach the above mentioned error value. Both

Fig. 5a, b show that the proposed connectivity-based

ranked scheme leads to a smaller error (in the average
sense) when compared to the traditional Monte Carlo

method.

Similar to Fig. 3, we now compute the probability
Pr½t1%\s) for s = 60, 90, 100, 120 and 200 days using the

connectivity-based ranking method and the classic Monte
Carlo approach (see Fig. 6). Figure 6 displays the con-

vergence rate of the probabilities for both approaches. We

remark that the connectivity-based ranking method leads to
a faster convergence of the probabilities. With N + 100,

the probabilities obtained by the proposed method are

almost converged. As a consequence, we can assume that
the shape of the CDF reaches a stable structure at reason-

ably small N values, meaning that not only the first two

statistical moments (lt1% and rt1% ), but also the higher order
moments such as skewness and kurtosis can be evaluated

using a smaller number of realizations N if the proposed

methodology is applied.

Next, we apply our methodology for porous formations
displaying different levels of heterogeneity in the hydraulic

conductivity field. Heterogeneity is epitomized by the log-

conductivity variance r2Y . Figure 7 reports the convergence

analysis for r2Y ¼ 1, 3 and 4. Results displayed in Fig. 7

reveal that the performance of proposed connectivity-based

ranking method improves when r2Y increases. For example,

Fig. 7a, b show that both lt1% and rt1% computed for r2Y ¼ 4

tend to their converged values at lower N (i.e. N + 100)

(and with less oscillations) for the proposed connectivity-

based ranking scheme when compared to the values
obtained via the traditional Monte Carlo approach. The key

reasons for this are as follows: when heterogeneity

increases, (1) the likelihood of the occurrence of well-
connected highly conductive channels increases and (2) the

corresponding least resistance paths are better delineated

given the higher contrasts in K values within the domain.
Therefore, the performance of the graph theory method-

ology used to estimate Rm (Rizzo and de Barros

2017, 2019) improves, which is the foundation of the
proposed connectivity-based ranked scheme, see Sect. 3.

Additionally, there is more variability in the first arrival

time predictions when considering larger values of r2Y . On
one hand, this leads to more oscillations on the conver-

gence rate of the statistical output of the first arrival times

when the traditional Monte Carlo approach is adopted. On
the other hand, for higher heterogeneity, the ranking pro-

cedure (which makes use of balanced subsets) reduces this

noisy effect leading to faster convergence of the first two
statistical moments.

For completeness, we now briefly illustrate the perfor-

mance of the methodology for a 3D case. Parameter values
used in the 3D simulations are reported in Table 1. Similar

Fig. 6 Comparison of the convergence rate of the probabilities
obtained from the traditional Monte Carlo method (solid line) and the
proposed connectivity-based ranked Monte Carlo (dashed line)
method
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to the 2D case, the 3D scenario analysis takes into account
an ensemble of N ¼ 2047 hydraulic conductivity fields

with r2Y ¼ 3. In Fig. 8 we present the same error analysis

employed for the 2D scenario (Fig. 5). As shown in Fig. 8a,

the adoption of our ranked methodology grants that the

error is consistently lower than the mean value of the
shuffled classic Monte Carlo ensembles for lt1% . Figure 8b

reveals that the error for rt1% is lower than the average

(over all shuffled classic Monte Carlo ensembles) error for

N[ 15. As previously mentioned, it is important to note

that the ranking procedure in our approach removes the
randomness effect of the sampling on the convergence of

the model output statistics. The results depicted in Fig. 8
show the potential of the proposed methodology in

reducing the computational burden associated with the

estimation of first arrival times in 3D simulations.

5 Summary

This paper provides a new methodology to improve the

computational efficiency of Monte Carlo simulations
aimed at estimating the uncertainty of first arrival times of

a solute plume in a spatially heterogeneous porous for-
mation. As shown in Chapter 9 of Rubin (2003), first

arrival times are subject to largest uncertainty.
The methodology proposed in this work is based on

ranking the randomly generated hydraulic conductivity

fields according to their connectivity and re-ordering the
ranked ensemble through a balanced binary tree sampling

procedure. We employ the minimum hydraulic resistance

as a connectivity metric given (1) its strong correlation
with first arrival times and (2) that it can be obtained at a

very low computational cost through graph theory [see

details in Rizzo and de Barros (2017)]. Due to the latter, the
processing time needed to perform the ranking procedure is

negligible.

We test the proposed methodology against the results
obtained through the traditional Monte Carlo method (i.e.

non ranked). Our results show that the mean and standard

deviation of the first arrival times (obtained from the
ranked and re-ordered ensemble) converge faster for both

2D and 3D domains and with less oscillations. Further-

more, we show how the level of heterogeneity of the por-
ous formation impacted the performance of the

connectivity-ranked Monte Carlo simulations. The results

Fig. 7 Convergence rate for the
a mean and b standard deviation

of t1% for r2Y ¼ 1; 3 and 4.
Comparison between the
proposed connectivity-based
Monte Carlo method (filled
markers) with the traditional
Monte Carlo method (void
markers)

Fig. 8 Relative error E of a lt1%
and b rt1% as a function of the
ensemble size N of 3D K fields.
Results for the connective-based
ranked Monte Carlo (red solid
line) and for the classic Monte
Carlo ensemble randomly
shuffled 200 times (gray lines).
The black solid line corresponds
to the mean of the relative error
over all 200 shuffles, while the
black dotted line represents the
confidence interval
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reported in this work show that the performance of the

proposed method increases with the increasing level of
heterogeneity since the connectivity metric employed in

our work becomes a better indicator of the first arrival time

(Rizzo and de Barros 2017).
Future research directions consist of applying this

methodology to real sites. In this work, the proposed

methodology was illustrated in an ensemble of uncondi-
tional hydraulic conductivity fields. As shown in Rizzo and

de Barros (2019), the graph theory-based connectivity
metric is also a random variable and can be obtained in

both unconditional and conditional random fields. Details

regarding the statistical features of the minimum hydraulic
resistance can be found in the literature (Rizzo and de

Barros 2019). If the geostatistical model is uncertain, our

approach can be expanded by adopting Bayesian averaging
concepts to generate the conductivity fields (Neuman 2003)

needed to estimate the connectivity metric ensemble.
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Appendix: Flow and transport formulations

We consider a steady-state flow in a spatially heteroge-

neous aquifer. The flow field is governed by:

r ! ðKrhÞ ¼ 0; ð5Þ

with h denoting the hydraulic head and K the hydraulic

conductivity.

For all our 2D and 3D simulations, we consider per-
meameter-like boundary conditions to ensure the flow is

uniform-in-the-mean. That is achieved by setting Dirichlet

boundary conditions on the inflow and outflow of the
domain and no-flow Neumann conditions on the remaining

boundaries.

An inert solute is instantaneously released along a line
source perpendicular to the mean flow direction. Transport

is assumed to be governed by the advection-dispersion

equation:

oc
ot

þ u !rc ¼ r ! ðDrcÞ: ð6Þ

where c is the resident concentration, u is the velocity field,
D is the local-dispersion tensor assumed to be anisotropic

and defined as:

D ¼ ðaT jujþ DmÞIþ
aL & aT

juj
uuT ð7Þ

where Dm is the molecular diffusion, aL is the longitudinal
dispersivity and aT is the transverse dispersivity, where in

our study x1 denotes the longitudinal dimension and x2 and
x3 the transverse ones. Transport is solved through a ran-
dom walk particle tracking (RWPT) code. The RWPT code

used in our work is GPU-based and denoted as PAR2

(Rizzo et al. 2019).
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